Problems – Chapter 2

Read carefully Chapter 2 (Section 2.4 is optional) before answering these questions.

1. A farmer can produce goods x (eXlax) and y (Yams) on his farm. The quantity of y that can be produce is negatively related to the output of x. Specifically, our farmer can produce no more than six units of x. Further, the output of y that can be produced is less the more x that is produced. Also, output cannot be negative. Specifically, outputs must satisfy the following inequalities

\[0 \leq y \leq 36 - x^2, \ 0 \leq x \leq 6 \]

Or to put it another way, the production transformation function is

\[y = 36 - x^2, \ 0 \leq x \leq 6 \]

a. Determine \(dy/dx \) when \(x = 3 \); find \(dy/dx \) as a function of \(x \).

b. What is the marginal rate of transformation when \(x = 3 \)?

\[\text{MRT}_{y \text{ into } x} = -\frac{dy}{dx} = \quad ; \text{MRT}_{x \text{ into } y} = \quad \]

c. Suppose that the price of x is \(p_x = $8 \) and the price of y is \(p_y = $2 \). Determine the quantities of x and y that should be produced in order to maximize profits, \(\pi \), assuming that there are no production costs so total revenue equals profits:

\[\pi(x,y) = 8x + 2y \]

Hint: First substitute the production transformation function into the profit function to obtain profit as a function of only x: \(\pi^*(x) = 8x + 2(36-x^2) \).

d. What is the marginal rate of transformation (y into x) when the firm is maximizing profit?

Is our firm’s \(\text{MRT}_{y \text{ into } x} = \frac{p_x}{p_y} \) when profits are maximized?

\textbf{Proposition:} If a firm producing X and Y with zero production costs is maximizing profits then \(\frac{p_x}{p_y} = \text{MRT}_{y \text{ into } x} \)

(See tangency point e on Figure 2.3, page32)

\textbf{Proof:} Let \(T(x) = y \) denote the production transformation curve.

Then substituting \(T(x) \) for y into \(\pi(x,y) = p_x x + p_y y \) yields \(\pi^*(x) = p_x x + p_y T(x) \).

Profit maximizing requires \(d\pi^*/dx = p_x + p_y dy/dx = 0 \) or \(p_x/p_y = -dy/dx = \text{MRT}_{y \text{ into } x} \)

e. Suppose that inflation were to cause the price of x and the price of y to both double, \(p_x = $16 \) and \(p_y = $4 \). How would this affect the output of x and y?

f. Determine the supply function for x showing the quantity of x that will be produced as a function of \(p_x \) given that that \(p_y = $2 \), and assuming that the

\(^1\) See my Email of 9/7/06 about the distinction between the two MRT concepts
objective is to maximize profits (there are no production costs). Then determine, in general, \(x(p_x, p_y) \) the supply of \(x \) as a function of \(p_x \) and \(p_y \).

2. The 100 farmers in England each have the same production transformation function of question 1: \(y = 36 - x^2 \). The 200 farmers in Portugal also have the same production function.

a. Each farmer in England produces \(x = 2 \) and \(y = 32 \). Commodity \(y \) sells at a price of £2 (2 pounds). What price of \(x \) must prevail in England if this output is being produced by profit (= revenue, as there are no production costs) maximizing farmers? [Hint: First calculate the MRT \(y \text{ into } x \)]

b. The 200 profit-maximizing farmers in Portugal are each producing \(x = 5 \). How much \(y \) are they producing? Commodity \(y \) sells for €1 (Euro). What must be the price of \(x \) in Portugal?

c. England and Portugal together are producing 1200 units of \(x \). How much \(y \) are they producing? Fill in the blanks.

<table>
<thead>
<tr>
<th>Each farmer</th>
<th>Number of farmers</th>
<th>Each country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>x output</td>
<td>y output</td>
</tr>
<tr>
<td>England</td>
<td>2</td>
<td>_____</td>
</tr>
<tr>
<td>Portugal</td>
<td>5</td>
<td>_____</td>
</tr>
<tr>
<td>Total</td>
<td>_____</td>
<td>_____</td>
</tr>
</tbody>
</table>

d. Reallocate the production of the goods between the two countries so that the two countries combined still produce 1200 units of \(x \) but more \(y \)!

e. You have inherited a boat and £40\(^2\) from your late Uncle Rich. Consider the following alternative arbitrage operations: (Assume transportation costs are negligible)

Arbitrage Operation A: Buy £40 worth of good \(y \) in England, ship it to Portugal, trade it for good \(x \) in Portugal and bring the \(x \) back to sell in England.

Arbitrage Operation B: Purchase £40 worth of good \(x \) in England, ship it to Portugal, exchange it in Portugal for good \(y \), and ship the \(y \) back to sell in England.

Which Arbitrage Operation will yield you the most profit? How many pounds?

Class Discussion Questions:

1. Does your arbitrage operation benefit the citizens of England and/or Portugal? Does it hurt anyone? Explain

2. If a large number of traders attempt to profit in this way, how will prices change and how will the opportunity for profit be affected?

Honors Option Questions: #7 and #8, page 56 of the text. (If you choose to try the Honors option question, you must work on your own without assistance from the TA or the instructor)

\(^{2}\) The symbol £ denotes the British Pound, which initially was equal in value to a troy ounce of silver.